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Numerical prediction of flow in a model of a (potential)
soft acting peristaltic blood pump
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SUMMARY

This paper presents a numerical study of the flow field in a novel ‘soft’ acting peristaltic pump. The pump
has potential applications wherever pumping of biological or sensitive fluids with reduced damage is
required. The application of the device presented is as a blood pump. The model of the pump comprises
a cylindrical tube that forms three chambers. The walls of these chambers move radially as a function of
time. The pumping action is initiated by applying phased movement between the chambers. The flow is
treated as laminar, unsteady, incompressible, Newtonian, and with a moving boundary. The governing
equations are solved using a finite element method (FEM). An operating speed of 60 cycle min—' has
been chosen. The results show that a periodic solution can be achieved after four cycles. The velocity
field, streamline and shear stress are presented and discussed. The flow has generally a two-way pulsatile
nature, moving forwards and backwards. However, at the outlet, there is a net outflow over one cycle
against a zero pressure head. Net flow linearly decreases to zero with increasing pressure head. Copyright
© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A major difficulty in the design of blood pumping systems is in avoiding cellular damage. A
common way to meet this requirement is to use rotary peristaltic pumps. These pumps force
the fluid to move by the action of rollers over the tube. However, the tubes are often forced
shut, where they may still cause damage because of high contact forces and high localized
viscous shears. Therefore, improved pumping systems are still needed. The potential range of
applications for a new pump is large, especially where particulate living matter is to be
pumped, e.g. in the brewing and biochemical industries, for serum and vaccine production, for
dialysis and for blood pumps. Blood pumps are needed particularly during heart bypass
surgery, where it is required to stop the heart.
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Rotary peristaltic pumps are widely used for blood pumping applications because they fulfil
the majority of the blood pumping requirements. There have been a number of theoretical
studies on peristaltic pumping, however, these involve sinusoidal, infinitely long, two-
dimensional, continuous peristaltic waves [1-3]. Fung and Yih [1] were among the first to
study the fluid mechanics of small amplitude peristaltic waves. Shapiro et al. [2] studied small
amplitude, slow moving Newtonian flows and identified unique features of peristaltic flows,
such as ‘reflux’ and ‘trapping’ in the context of biological vessels. Reflux is a feature where the
mean retrograde velocity of the fluid is opposite to the direction of wave propagation.
Trapping occurs where there is a stationary recirculation and fluid is unable to move with the
main flow stream. Provost and Schwarz [3] presented solutions for long wavelengths and large
amplitudes. They also predicted the possibility of mean axial flow that opposes the direction
of wave propagation. Aspects of this type of flow are also seen in the discrete pumping model
of the present study. There is a lack of theoretical work applied to the potential of discrete
(discontinuous) peristaltic pumping. Actual rotary peristaltic pumps used for blood pumping
applications cause a complex three-dimensional curved deformation of the tube over a finite
length. Li and Brasseur [4] studied flow in finite length tubes with continuous waves and found
that the pumping performance depends on the number of waves, the phase of the first and last
waves, and the degree of tube occlusion. In addition, this theoretical work shows that
peristalsis produces very large shear stresses in the region of maximal occlusion. These
characteristics have important consequences for fluids like blood, particularly in the activation
of blood to form a thrombus.

There have been a few studies on predicting damage to red blood cells (haemolysis). It is well
known that viscous shear stresses and Reynolds stresses are a major cause of blood trauma
[5,6]. Blackshear and Blackshear [5] among many others have shown the need to consider the
magnitude and time history of these parameters to estimate mechanical trauma and platelet
activation. Bludszuweit [6] used these findings to produce a general theoretical blood damage
prediction model based on the mechanical loading and damage accumulation. The work was
applied to centrifugal pumps, but concludes that accurate prediction requires the detailed study
of frequency and amplitude of stress loading on blood elements.

In practice it is extremely difficult to obtain detailed loading and history on blood
components, yet this information is needed and numerical techniques, such as computational
fluid dynamics (CFD), have recently provided a possible way of determining these conditions.
Some CFD models have been applied to predict flow conditions past a fixed stenosis [7,8]. Tu
et al. [7] studied steady and pulsating flow through a range of rigid stenosis and found that the
unsteady flow past a stenosis produces features not seen in steady flow alone. More recently,
Bluestein et al. [8] simulated a range of steady state flow conditions through a stenosis and was
able to correlate experimental observations of platelet deposition with predicted regions of
high wall shear stress. Some transient artificial heart valve flows and wall-driven heart chamber
flows have been predicted and compared with experimental data. These have shown that CFD
techniques can qualitatively predict complex observed features of interest to the physiologist.
However, due to the difficulty in modelling the complex physical and chemical properties of
blood, care must be taken on the quantitative results since they generally do not agree as well.
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2. THE PHYSICAL PUMP

In studying a potentially new discrete peristaltic blood pump, it is suggested that the
synchronized motions of the walls of a section of tube containing the fluid can achieve net
pumping of the fluid. For example, a single straight tube, divided into three sections, can be
made pump a fluid if the motions of the walls of each section are synchronized in a pre-defined
manner. The overall aim of the present work is to examine this principle theoretically and
assess the potential of such a peristaltic pump. Finite element analysis of the fluid flow in a
tube with moving boundaries can be used to gain a better understanding of the fluid flow
behaviour within the pump. This is considered to be an important step towards the improve-
ment of the design.

Figure 1 shows a schematic representation of a prototype peristaltic pump. This pump
works by a principle of occlusion and displacement. It is made up of a single silicone tube
surrounded by three pumping chambers. Each chamber is isolated from its neighbours making
it possible to vary the outer pressure on the silicone tube in each compartment. The pressure
difference between the inside and the outside of the tube distorts the silicone tubing, such that
it squeezes the fluid inside the tube. When the pressurizing cycles in the three chambers are
synchronized the pump is capable of average peristaltic pumping of the fluid, in one direction,
inside the tube. Note that the motion of this pump is significantly different from the
continuous peristaltic wave motion noted before.

3. THE FINITE ELEMENT MODEL

The finite element model is based on the prototype pump, consisting of three chambers and
has the same overall dimensions. While the boundaries of the three chambers are made to
move independently, the tube wall is fixed at intermediate positions. Therefore, at one instant
in time, the computational domain may take the shape shown in Figure 2. Two fixed shorter
sections are located between chambers 1 and 2, and between chambers 2 and 3. The position
of the tube wall for one chamber at different times during the cycle is shown in Figure 3.
The dimensions based on the prototype pump are D=6.0x10"*m, L=250x 10"*m,
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Figure 1. Schematic of ‘soft’ acting peristaltic pump.
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Figure 2. Typical geometry at one instant during the pumping cycle.

G=05%x10"m, S=30x10"°m, and R=6.5x 10~ *m. Figure 2 shows two additional
chambers with fixed walls at each end. These were added to increase computational stability
only and will be referred to later.

The position of every point on the moving boundary is defined by radial displacement r
relative to the undistorted position of the tube. The distance r can be obtained from a defined
function. Two functions were considered in the following form in order to produce the
deflection shown in Figure 3(a) and (b). The displacement functions (1) and (2) vary with time
¢t and longitudinal displacement z in the form

r= sz(z—L)zB—;cos 27Tt:| )
r = Cz*(z — L)¥[sin 2nt] 2)

where C and L are constants and the term in square brackets represents a time function that
oscillates sinusoidally with time 7. In Equation (1), the time function varies between 0 and + 1,
whereas in Equation (2) it varies between — 1 and + 1. The boundary conditions for
Equations (1) and (2) are given in Table I. The value of constant C can be found by
substituting the time at maximum deflection into Equation (1) or (2) giving

16D
Lt

A3)

The pump works at a frequency of 1 cycle s~ '. Each of the three chambers is run out of phase
with its neighbour by introducing a time lag ¢. A time lag of 1 s is chosen so that the motion
is smooth and continuous over one pump cycle. The timing sequence is such that constriction
occurs in the sequence chamber 1 followed by chamber 2, and then chamber 3. This is the
usual sequence for continuous peristaltic pumping.

When a cylindrical section of a flexible tube collapses, it behaves in a complex manner.
Here, however, it is assumed that the cross-section remains circular at all times. Hence, the
model maintains its axisymmetric shape. There is, therefore, no tangential velocity (swirl)
component V,. No-slip condition was applied to all tube walls. As a result, at the wall the fluid
has the same radial velocity as the wall. The radial velocity of the tube wall can be obtained
from differentiation of Equations (1) and (2) with respect to time.
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Figure 3. Position of first chamber wall at different time intervals shown in Table 1. (a) Equation (1); (b)
Equation (2).

The radial velocity on the symmetry line was set to zero. At the inlet and outlet, the axial
velocity was free, but the radial velocity was set to zero. The fluid elements at all other
positions were free to consist of axial and radial velocity components. Initially, there was no
pressure gradient applied to the flow. This not only simplifies the problem but also allows the
effects of the moving boundary alone to be investigated. The fluid was assumed to be
Newtonian, homogenous, incompressible and isothermal. Also, the fluid was at rest at
t=0.0s, hence any subsequent motion is determined by the motion of the boundaries alone.
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Table I. Boundary conditions for the displacement functions.

t(s) Equation (1) Equation (2)
0.00 r=0;0<z<L r=0;0<z<L
0.25 r=—D;z=LJ2
0.50 r=—D;z=L)2 r=0;,0<z<L
0.75 r=+D;z=LJ2
1.00 r=0;,0<z<L r=0;,0<z<L

For simplicity, the fluid properties of water at 20°C were used. The flow was assumed to be
laminar.

The parameters upon which the performance of the pump depends are: number of coupled
chambers, time function, phase difference between chambers, shape of the deforming wall,
physical dimensions of pump, applied forces (variable operating pressure gradient or body
forces) and fluid properties. The model described here is based around the simplest aspects of
the above variables. It was chosen deliberately to study the effect of discrete peristaltic
pumping in a simple set-up.

4. COMPUTATIONAL DETAILS

The governing equations were the two components of the momentum equation, in radial and
axial directions, and the continuity equation. They were solved using an axisymmetric
two-dimensional grid containing 2600 quadrilateral four-node elements. This low-order scheme
was initially chosen to keep the overall size of the problem manageable owing to the large
number of required time steps. Later it will be shown that this solution is grid-independent.
The deformation of the grid varied according to the boundary condition function described in
Equations (1) and (2). A section of this deforming grid is shown in Figure 4. A fully coupled
Newton—Raphson solution algorithm was employed. The pressure was derived using the
penalty function method. The initial condition was obtained from the linear Stokes flow
solution.

The solution was said to have converged when two criteria were satisfied. First, the sum of
residuals for all cells normalized with respect to a reference value fell below 10 ~3. Second, the
change in velocity for all cells as a fraction of current velocity also fell below 10~°. This was
usually achieved after ten iterations at each time step. The magnitude of each time step was
variable and determined by the local truncation error. Figure 5 shows the time step varying
between 0.0004 s and 0.02 s. The time integration method was backward Euler.

Since the nature of the pump is periodic, the solution was allowed to continue for a number
of cycles until a repeatable flow field was achieved and the effect of initial conditions was
minimized. Four cycles, consisting of 1225 time steps, were required to achieve this condition.
The computation time was 5 processor hours on a Sun Sparc Station 20.

The flow experiences significant changes throughout the pumping sections, so it was found
necessary to separate the inlet and outlet ends of the computational domain away from the
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Figure 4. Nature of the deforming grid at extreme and intermediate stages of the pumping cycle 0°, 90°,
180°.
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Figure 5. Change in time step over four cycles.
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three main chambers, as shown in Figure 2. The walls of these sections were fixed. There was
no special treatment at the ends other than defining zero radial velocity, which helped
convergence and stability of the solution.

The finite element program FIDAP v7.51 [9] was used to solve the equations and implement
the above boundary and initial conditions.

5. RESULTS

The results are mainly presented for the displacement function given in Equation (1) for zero
pressure head. Figure 6 shows the time history of the velocity profile at the exit, during four
cycles, from the start of solution at #=0.0s to the end of solution at t =4.0s. The improved
repeatability of the solution as time progresses can be seen. The last two cycles (2—4 s) are
significantly more similar than the first two cycles (0—2 s). The change in net volume flow rate
at the outlet between the last two cycles was less than 0.5%. The velocity history at the exit
suggests that it has reached periodic repeatability.

Plate 1(a) and (b) shows the inlet and outlet velocity vector fields during the last cycle at
every 0.2 s interval. Plate 2(a) and (b) shows the equivalent streamline contours of the vector
field. The axial velocity profiles at the end of chamber 3 and at different times during the
fourth cycle are shown in Figure 7. Integration of the velocity profile yields the instantaneous
volume flow rate for both displacement functions shown in Figure 8.

Figure 9 shows the net flow rate with various pressure heads for both displacement
functions. The Reynolds number and Womersley number based on a typical flow velocity of
0.1 ms~! and frequency of 1 Hz in a non-constricted section is 1300 and 16.3 respectively.

To study the effect of different types of elements on the flow rate, solutions where also
obtained for 5828 four-node elements and 3290 nine-node elements. The results showed,
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Figure 6. Repeatability of velocity magnitude at section H (exit) over four cycles.
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Figure 7. Velocity profiles at the end of chamber 3 section G.

compared with the 2600 four-node elements, a 1.2% and 0.7% difference in volume flow rate
respectively. In addition, both these simulations contained elements with approximately half
the aspect ratio of the first, indicating that these solutions produce gross results independent
of the grid.

6. DISCUSSION

Velocity fields show that the contracting and expanding nature of the three chambers causes
the fluid to behave differently than if only a single chamber was involved. The flow predicted
in each chamber was similar to that obtained by the analytical solution of flow in an
expanding or contracting pipe, as described by Uchida and Aoki [10]. The influence of the
curved boundary and the effect of multiple chambers were to distort the direction of net flow
in or out of a chamber.

Plates 1 and 2 (¢ = 3.0 s) show the fluid accelerating through the narrowing and recirculating
immediately downstream of chamber 3. The velocity profile at a radial section through G at
t =3.0 s (Figure 7) shows that the flow is mainly in the positive direction. Soon after this, at
t =3.1s, the brief appearance of a central jet can be seen in Figure 7 causing a peak in the
velocity profile together with reversing flow near the walls.
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Figure 8. Volume output against time over one cycle for various pressure heads.

At t = 3.2 s, the recirculation region occupies a significant portion of the outlet duct. Due to
the viscous nature of the flow, the flow in fact never reattaches within the computational
domain and there is a partial reversal of flow at the outlet, compare t=3.0s and t=3.2s
(Plate 1(b)). During this time the net outflow rapidly decreases to zero, as shown in Figure 8.
At the same time the higher velocity of the jet causes it to shear past the surrounding slower
fluid and move downstream (Plate 1(b)). The axial jet causes the surrounding annular fluid to
decelerate, reverse and recirculate as a result of the low-pressure region created behind the
displacing jet. The effect is to rapidly accelerate the surrounding fluid in the opposite direction
to the jet pulse, hence creating a mixing and dissipating annular vortex.

As the pulse jet slows and weakens in intensity, the reverse flow is maintained by the low
pressure as a result of the currently expanding wall of chamber 3. Figure 8 shows that the
reverse net outflow begins at r=3.2s. Figure 8 also shows the pump reaches its maximum
reverse flow rate of 130 mlmin—! at 1=3.35s. By 1=3.65s, the jet pulse is very weak and
elongated and the back flow is rapidly decelerating because the chamber has fully expanded.
By t=3.8s, the contracting cycle begins. As the chamber contracts, reducing in volume, the
flow can only move forward because chamber 2 is effectively closed at this time. It is between
3.8 and 3.9 s that the pump reaches its maximum forward flow rate of 870 ml min —'.

Figure 8 shows that over the whole cycle the forward flow exceeds the reverse, and produces
a net forward output of 230 mlmin~'. This indicates that the first displacement function
(Equation (1)) is suitable for net pumping. However, we have seen that even with this

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 711-724



FLOW PREDICTION FOR PERISTALTIC PUMP 721

120
—&— Displacement Function (Eq. 1)

~3- Displacement Function (Eq. 2)

2.
[l

(=)
[==1

Pressure head (Pa)

40

20

100 120 140 160 180 200 220 240 260 280

Net flow rate (ml/min)
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non-optimized configuration relatively large flow rates are seen during the cycle, so an
increased potential pumping ability exists. Figure 8 also shows that the results from the second
displacement function (Equation (2)) describe a completely different flow characteristic. This
flow profile produces a forward flow rate of 260 ml min ~'. This shows that with the correct
selection of displacement function it may be possible to produce the required mean flow rate
and flow profile.

Figure 9 shows the effect of a pressure gradient on the mean net flow. Both displacement
functions show a decreasing net flow rate at the outlet with increasing pressure head. For the
four pressure heads considered, the relationship is approximately linear. In addition the lower
gradient of the second displacement function indicates that this pumping characteristic is more
influenced by changes in pressure gradient. This influence is also seen by the spread of curves
in Figure 8 for Equation (2).

The magnitude and duration of shear experienced by blood components in the pump are
important factors affecting its performance. High shear causes cellular components to spin
violently and rupture their membranes. These components, particularly platelets, may respond
to this type of flow by triggering a clotting response. Activating platelets in this manner should
be kept a minimum. In the present study, it is possible to predict regions within the flow field
and the instants of time, or time periods, within which high shear levels occur. The regions of
maximum shear rate have been found to occur when the chambers are approaching the
maximum stenosed position. This agrees in principle with the findings of Robertson et al. [11],
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who also predicted maximum shear stress at the throat of a transversely moving boundary.
The maximum instantaneous shear rate is estimated to be 10*s~! occurring at t=3.1s
between section G and H for a maximum of 0.1 s (Plates 1 and 2). This gives an approximate
maximum product of particle shear rate x resident time (duration) of 10°.

Currently, there is little quantitative evidence to suggest how flow mechanics initiate platelet
activation. The magnitudes and duration of various flow conditions responsible for platelet
activation can only be determined through experimental investigations using actual blood.
Ramstack et al. [12] observed experimentally that a shear—duration product of 10° was
necessary to activate platelets under constant shear rates. More recently, Bluestein et al. [8]
showed that platelets become activated when passing through a stenosis in a closed loop
circuit. The estimated maximum shear—duration product was 500. This is half the maximum
value present in the current device and clearly indicates that design improvement and
optimization is required to improve the potential of this pumping method.

The prediction by this laminar model is a rapid mixing nature of the flow and a strong
tendency for the transversely moving boundary to form momentary jets. These provide the
initial momentum to form vortices that continue to move the whole structure forward. The
energy within the vortex is dissipated as it shears past the surrounding fluid and decreases in
speed. In reality, large accelerations and decelerations seen may result in outbursts of
turbulence. Both simulations and experiments accounting for momentary turbulence will be
necessary to study the way in which these vortices rapidly form, interact with reversing flow,
and dissipate.

The dynamic velocity fields produced show a unique intrinsic pulsatile and agitating ability
of the pump. However, it is uncertain at this stage how suitable this type of flow is for blood
pumping applications. The advantages and disadvantages of pumping a live medium such as
blood depend on the exact nature of the flow and the behaviour of its components. Particle
paths need to be modelled to calculate the acceleration, shear history and duration of the
related forces on typical and extreme trajectories. There also is a need to account for the
non-Newtonian properties of blood. These become important particularly at low shear rates.
It has been seen that the flow oscillates resulting in many temporary regions of stationary or
slow shearing fluid.

Only with further study will it be possible to harness the unique characteristics of a pump
such as this. This may lead to alternative pumping applications. The simulation of the real
flow presents more of a challenge, since it contains compliant moving walls with the potential
benefits of gaseous diffusion across the walls (cardio-pulmonary applications) and localized
momentary turbulence.

7. CONCLUSION

The simple discrete peristaltic pumping method described produces complex flow condi-
tions purely due to the movement of its boundaries. The features predicted are regions of
recirculation, jets and vortices in a constant state of flux. When using a small displacement
function (Equation (1)), the net flow for a zero pressure gradient was 230 ml min—! in the
direction of the peristaltic wave (for the model studied). However, a larger displacement

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 711-724



FLOW PREDICTION FOR PERISTALTIC PUMP 723

the peristaltic wave (for the model studied). However, a larger displacement function (Equa-
tion (2)) produced a net forward flow of 260 ml min ~! for zero pressure head. Both these net
flows decrease linearly with increasing opposing pressure gradient up to at least 100 Pa. Shear
rates were found to be highest for the short period when the jets formed.

This is a first step towards attempting to predict and understand the flow in a relatively new
pump. This discrete peristaltic pumping mechanism provides a possible alternative to the
continuous rotary peristaltic pumps. With further study, appropriate design improvements can
achieve superior fluid dynamic performance to existing biological pumps.
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APPENDIX A. NOMENCLATURE

physical constant

maximum radial displacement of chamber = R — G
minimum radius at maximum wall deflection

axial length of one moving boundary chamber
radial displacement

undistorted radius of the tube

length of intermediate spaces between chambers
time

velocity vector

longitudinal position

NLgTuhnTNQOAO

Greek letters
¢ time phase shift between the chambers

REFERENCES

—

. Fung YC, Yih CS. Peristaltic transport. Journal of Applied Mechanics ASME 1968; 35: 669—675.

2. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number.
Journal of Fluid Mechanics 1969; 37: 799-825.

. Provost AM, Schwarz WH. A theoretical study of viscous effects in peristaltic pumping. Journal of Fluid

Mechanics 1994; 279: 177-195.

Li M, Brasseur JG. Non-steady transport in finite-length tubes. Journal of Fluid Mechanics 1993; 248: 129-151.

. Blackshear PL, Blackshear GL. Mechanical Hemolysis. McGraw-Hill: New York, 1987.

. Bludszuweit C. Model for a general mechanical blood damage prediction. Artificial Organs 1995; 19: 583—589.

. Tu C, Deville M, Dheur L, Vanderschuren L. Finite element simulation of pulsatile flow through arterial stenosis.
Journal of Biomechanics 1992; 25: 1141-1152.

. Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Fluid mechanics of arterial stenosis: relationship of the
development of mural thrombus. Annals of Biomedical Engineering 1997; 25: 344-356.

Nk W

(o)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 711-724



724 S. NATARAJAN AND M. R. MOKHTARZADEH-DEHGHAN

9. Fluent. FIDAP. Fluent Incorporated: Centerra Resource Park, Lebanon, NH 03766-1442, U.S.A., 1998.

10. Uchida S, Aoki H. Unsteady flows in a semi-infinite contracting or expanding pipe. Journal of Fluid Mechanics
1977; 82: 371-387.

11. Robertson JM, Clark ME, Cheng LC. A study of the effect of a transversely moving boundary on plane Poiseuille
flow. Journal of Biomechanical Engineering ASME 1982; 104: 314-323.

12. Ramstack JM, Zuckerman L, Mockros LF. Shear-induced activation of platelets. Journal of Biomechanics 1979;
12: 113-125.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 711-724



COLOR CODE:

VELOCTITY
0.26E+00
0.23E+0DQ
0.20E+00 38
0_15E+00
0.13E+0D0
0. 10E+00
0.&pE-01
0.33B-01
{ak
Time
30
32
3.4
-'a.:u-.a:a E 3.8
COLOR CODE:
VELOCITY
g. ZEE+D0
0. 38
0.
0.
0.
0.
0. b

Plate 1. (a) Inlet velocity field from ¢ = 3.0 at 0.2 s intervals; (b) outlet velocity field from #=3.0 at 0.2 s
intervals.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32(6)



LEGEND

-- 0.16E-07
-= c'.lSE-':\'E ——
- : St = 36
38
- (a)
H Time
1
—| 30
|
| 32
]
| a4
LEGEND
-- 0.18E-07
-- 0.10E-05
-0z —
- — 36
- = T'T..:.__..; 35
- (b}

Plate 2. (a) Inlet streamline contour plot form 7= 3.0 at 0.2 s intervals; (b) outlet streamline contour plot
from ¢ =3.0 at 0.2 s intervals.
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